

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2013

MT 3964-FORMAL LANGUAGES AND AUTOMATA

Date : 12/11/2013
Dept. No. \square
ANSWER ALL QUESTIONS
I a) Construct a finite automaton to accept set of all strings over $\{0,1\}$ ending with 00
b) Construct a finite automation accepting the set $L=\left\{a^{n} b^{m} / m, n \geq 1\right\}$
c) i)Let L be a set accepted by a nondeterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L.
ii) State and prove pumping lemma.
[OR]
d) i) Let r be a regular expression. Then prove that there exists an NFA with \in - moves that accepts $L(r)$.
ii) Construct an NFA for the regular expression 11($\mathbf{0}+\mathbf{0 1})^{*}+\mathbf{0 0}(11) *$.

II a) Prove that $\mathrm{L}=\left\{0^{p} / \mathrm{p}\right.$ is a prime number $\}$ is not regular.
[OR]
b) Prove that if $L_{1}=\{+, 0\}$ and $L_{2}=\{\alpha, \delta\}$. Find $L_{1} L_{2}$ and $L_{1}{ }^{3}$.
c) i)Let $L_{1}=(\mathbf{0}+\mathbf{1}) * \mathbf{0}$ and $L_{2}=\mathbf{1}(\mathbf{0}+\mathbf{1})^{*}$. Construct an automaton to accept $L_{1} \cap L_{2}$.
ii) Construct a grammar to generate $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.
[OR]
d) Minimize the following automation.

	0	1
$\rightarrow \mathrm{~A}$	B	C
B	D	E
C	F	G
*D	D	E
E	F	G
${ }^{*} \mathrm{~F}$	D	E
${ }^{*} \mathrm{G}$	F	G

III a) Construct a grammar to generate $L=\left\{0^{\prime \prime} 1^{n} / n \geq 1\right\}$.
[OR]
b) Eliminate \in-productions in the grammar with production rules $S \rightarrow A B, A \rightarrow a A A / \in, B \rightarrow b B B / \in$.
c)i) Construct a grammar to generate all odd numbers less than 1000 .
ii) Find a grammar in CNF equivalent to a grammar whose productions are $S \rightarrow 1 A / 0 B, A \rightarrow 1 A A / 0 S / 0, B \rightarrow 0 B B / 1 S / 1$ with 0,1 as terminais
[OR]
d) Reduce the grammar to CNF given that $S \rightarrow S /[S \supset S] / p / q$ are the productions of G .

IV a) Define a PDA and give an example.
[OR]
b) Define parse trees and give an example.
c) If a PDA A accepts L by empty stack then prove that there exists another PDA B accepting L by final state
[OR]
d) Construct a PDA that accepts $\mathrm{L}=\left\{w c w^{R} / w \in(0+1) *\right\}$ by
i) empty stack.
ii) final state.

V a) Discuss about moves between the ID of the Turing Machine.
[OR]
b) Discuss about the codes of a Turing Machine.
c) Design a TM to accept the language $L=\left\{0^{n} 1^{n} 2^{n} / n \geq 1\right\}$.
[OR]
d) Design a TM to perform proper subtraction.

